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yer delivers 3-bromopyruvate to
mitochondria for metabolic regulation and cancer
radio-immunotherapy†

Wangqing Bian,‡ab Xiaomin Jiang,‡ac Jinhong Li,a Langston Tillman,d Chaoyu Wang,ac

Wenyao Zhen,ac Ralph R. Weichselbaum,c Tobias Fromme*be and Wenbin Lin *ac

Abnormal cancer metabolism causes hypoxia and immunosuppression, limiting the anti-tumor efficacy of

radiotherapy. Herein, we report a positively charged, mitochondria-targeted nanoscale metal–organic layer

conjugated with 3-bromopyruvate (BP), BP/Hf12-Ir, for metabolic reprogramming and radiosensitization.

BP/Hf12-Ir disrupts oxidative phosphorylation and glycolysis, reducing energy production and alleviating

hypoxia to enhance radiotherapy and anti-tumor immunity. BP/Hf12-Ir in combination with X-ray

irradiation inhibits tumor growth by 95% and prevents lung metastasis in mouse models. When further

combined with immune checkpoint blockade, this treatment induces robust anti-tumor immunity,

achieving 98% tumor growth inhibition.
Introduction

Cancer cells undergo metabolic reprogramming to support
their proliferation through increased glycolysis.1–4 Targeting
altered metabolic pathways can disrupt energy production and
biosynthesis processes to induce cancer cell death.4–8 However,
when glycolysis is inhibited, cancer cells can switch to mito-
chondrial oxidative phosphorylation (OXPHOS) for energy
production.3,9–11 Simultaneous inhibition of glycolysis and
mitochondrial metabolism overcomes the compensatory
mechanisms of cancer cells to effectively disrupt energy
production and kill cancer cells.

Hexokinase II (HK-II) catalyzes the rst step in glycolysis by
converting glucose to glucose-6-phosphate12,13 and presents
a prime target for disrupting cancer cell metabolism.14–16 HK-II
attaches to the outer membrane of mitochondria (OMM)
through interaction with the voltage-dependent anion channel
(VDAC).12,17 ATP from OXPHOS fuels mitochondrion-bound HK-
II to drive glucose-6-phosphate synthesis.12,18–20 Inhibition of
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HK-II can interfere with its binding to VDAC, triggering
apoptosis in cancer cells.12,13 As an analog of pyruvate and
lactate, 3-bromopyruvate (BP) inhibits HK-II through covalent
modication of cysteine residues to decrease glycolysis. HK-II
inhibition also reduces oxygen consumption to alleviate
tumor hypoxia and sensitize cancer cells to radiotherapy.17,21–23

Radiotherapy is an important treatment for the majority of
cancer patients.24–28 Radiotherapy induces cancer cell death by
directly damaging DNAs or indirectly decomposing vital
biomolecules via generating reactive oxygen species (ROS).
However, radiotherapy is only effective at high X-ray doses,
which cause severe side effects in cancer patients.29–31 Signi-
cant efforts have been devoted to developing nanotherapeutics
to improve cancer treatments including radiotherapy.32–36 We
have recently demonstrated radioenhancement effects of high-Z
element nanoscale metal–organic layers (MOLs), a monolayer
version of metal–organic frameworks.37–39 Ultrathin MOLs also
facilitates ROS diffusion to increase its cytotoxicity to tumor
cells,40 and can be modied with functional molecules to syn-
ergize with MOL-mediated radioenhancement.41–44

Recently, Fu et al. loaded BP into Hf-TCPP nanoscale metal–
organic framework to overcome RT resistance.45 Shen et al. co-
loaded BP and metformin into ZIF-90 to alter metabolic regu-
lation, which increased the effectiveness of redox-based anti-
cancer therapy.46 Meng et al. co-loaded BP and glucose oxidase
into ZIF-8 to disrupt redox balance in a hepatocellular carci-
noma cell line and achieve an anti-tumor effect.47 However, the
synergistic inhibition of glycolysis and OXPHOS in combination
with RT for antitumor treatment remains unexplored and BP
has not been coordinated to MOLs for RT enhancement.

Herein, we report a bifunctional MOL, BP/Hf12-Ir, with BP
conjugated to the Hf12-Ir MOL comprising Hf12 secondary
© 2025 The Author(s). Published by the Royal Society of Chemistry
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building units (SBUs) and Ir(DBB)[dF(CF3)ppy]2
+ (DBB = 4,40-

di(4-benzoato)-2,20-bipyridine), [dF(CF3)ppy = 2-(2,4-
diuorophenyl)-5-(triuoromethyl)pyridine] ligands for simul-
taneous mitochondrial metabolic regulation and radio-
enhancement (Fig. 1). The positively charged MOL targets
mitochondria, where high intracellular phosphate concentra-
tions trigger BP release from BP/Hf12-Ir, enhancing RT by alle-
viating hypoxia through the inhibition of mitochondrial
function and glycolytic metabolism.48–52 Consequently, BP/Hf12-
Ir in combination with X-ray irradiation potently regresses
colorectal carcinoma and breast cancer in mouse models.
Results and discussion
Synthesis and characterization of Hf12-Ir MOL and BP/Hf12-Ir

Hf12-Ir MOL was synthesized through a solvothermal reaction
between HfCl4 and H2DBB-Ir-F in N,N-dimethylformamide at
80 °C with triuoroacetic acid (TFA) as a modulator (Fig. S1–
S4†). Powder X-ray diffraction (PXRD) and 1H NMR studies
established Hf12-Ir as a 2D network of Hf12 SBUs bridged by
DBB-Ir-F ligands with a formula of Hf12(m3-O)8(m3-OH)8(m2-
OH)6(DBB-Ir-F)6(TFA)6 (Fig. 2a and S5†). Transmission electron
microscopy (TEM) and atomic force microscopy (AFM) imaging
conrmed the monolayer morphology with a diameter of
Fig. 1 (a) Synthesis of BP/Hf12-Ir MOL. (b) BP/Hf12-Ir-mediated metabol

© 2025 The Author(s). Published by the Royal Society of Chemistry
∼190 nm and a thickness of ∼1.9 nm (Fig. S6†). Dynamic light
scattering (DLS) studies gave a size of 170.6 ± 1.7 nm Hf12-Ir
(Fig. 2c).

BP/Hf12-Ir was synthesized by treating Hf12-Ir with BP at
room temperature through replacing TFA capping agents with
BP via carboxylate exchange. PXRD, TEM, and DLS studies
showed that BP/Hf12-Ir retained the crystallinity and size of
Hf12-Ir (Fig. 2a–c). 1H NMR studies indicated partial substitu-
tion of TFA by BP, yielding BP/Hf12-Ir with the formula of
Hf12(m3-O)8(m3-OH)8(m2-OH)6(DBB-Ir-F)6(TFA)1.6(BP)4.4 (Fig. S7–
S10†). The z potential of BP/Hf12-Ir remained positive at
24.2 mV, which endows its mitochondrial targeting ability
(Fig. 2d). The thickness of BP/Hf12-Ir slightly increased to
2.1 nm, due to the capping of Hf12 SBUs by larger BP groups
(Fig. 2e). Furthermore, BP/Hf12-Ir remained stable and retained
its crystallinity aer incubation in phosphate-buffered saline
(PBS) buffer for 24 hours (Fig. 2a). Liquid chromatography-mass
spectrometry (LC-MS) analysis showed that incubation of BP/
Hf12-Ir in 0.1× PBS and 1× PBS released 17.9% and 60.4% BP,
respectively, in 48 hours (Fig. 2f). Less than 10%BP was released
in pH 5.5 and 7.4 aqueous solutions. Thus, high phosphate
concentrations inside cells can trigger the release of BP from
BP/Hf12-Ir.
ic reprogramming enhances mitochondria-targeted radiotherapy.
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Fig. 2 (a) PXRD patterns of Hf12-Ir and BP/Hf12-Ir before and after
soaking in PBS for 24 h. (b) Number-averaged diameters of Hf12-Ir and
BP/Hf12-Ir in water. (c) TEM image of BP/Hf12-Ir. Scale bar = 200 nm.
(d) z potentials of Hf12-Ir and BP/Hf12-Ir in water. (e) AFM topographic
image, height profile (inset, right), and modeled height (inset, left) of
BP/Hf12-Ir. (f) Release profiles of BP from BP/Hf12-Ir.

Fig. 3 (a) CLSM images and colocalization of BP/Hf12-Ir with mito-
chondria. (b) Mitochondrial potential depolarization by JC-1 assay. (c)
DCFH-DA assay showing total ROS (green) generation. (d) Cell viability
assay of BP and BP/Hf12-Ir. (e) Clonogenic assay after different treat-
ments. CT26 cells were used in all studies. Scale bar = 20 mm in a–c. n
= 3 in d and e.
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In vitro study of BP/Hf12-Ir

BP/Hf12-Ir showed time-dependent uptake in CT26 murine
colon cancer cells (Fig. S11†). Mitochondrial targeting ability of
BP/Hf12-Ir was assessed by co-localization of Mito-Tracker and
Hf12-Ir luminescence by confocal laser scanning microscopy
(CLSM). BP/Hf12-Ir was abundantly present in mitochondria
with a co-localization coefficient (Pearson's R value) of 0.92
(Fig. 3a and S12†).

As mitochondria are cellular ATP factories with high oxygen
concentrations, mitochondria-targeted Hf12-Ir is expected to
efficiently generate ROS via radiosensitization. CLSM imaging
with 20,70-dichlorodihydrouorescein diacetate (DCFH-DA)
probe revealed that Hf12-Ir plus 6 Gy X-ray [denoted Hf12-Ir(+)]
and BP/Hf12-Ir(+) exhibited stronger total ROS signals than
PBS(+) in CT26 cells (Fig. 3c, S14 and 15†). Western blot studies
showed that Hf12-Ir(+) increased phosphorylated histone H2A.X
(g-H2AX) levels over PBS(+) in CT26 cells, indicating more DNA
double-strand breaks (DSBs) (Fig. S16†). The long-term prolif-
eration of CT26 cells under different X-ray doses was assessed
by clonogenic assays. Compared to PBS(+), Hf12-Ir(+) and BP/
Hf12-Ir(+) showed similar radiation enhancement factors at 10%
5236 | Chem. Sci., 2025, 16, 5234–5240
survival rates (REF10) of 1.28 and 1.36 over PBS and BP,
respectively (Fig. 3e and S17†). These results show that
mitochondria-targeted Hf12-Ir provides potent radio-
sensitization to damage DNAs and kill cancer cells.

The cytotoxicity of BP and BP/Hf12-Ir was assessed in CT26
cells by MTS assay. While Hf12-Ir showed no cytotoxicity
(Fig. S13†), BP and BP/Hf12-Ir showed high toxicity with IC50

values of 12.6 ± 1.1 mM and 9.3 ± 1.0 mM, respectively (Fig. 3d).
JC-1 staining was performed to investigate the effect of BP on
the mitochondrial membrane potential (MMP) which plays
a key role in OXPHOS for ATP synthesis. Hf12-Ir did not inu-
ence the MMP of CT26 cells, as evidenced by the unchanged J-
aggregate (red) and J-monomer (green) signals (Fig. 3b). In
contrast, BP caused signicantly decreased J-aggregate signals
and increased J-monomer signals in CT26 cells. BP/Hf12-Ir
treatment further increased J-monomer signals over BP. MMP
depolarization by BP/Hf12-Ir also induced strong apoptosis
(Fig. S18†). BP/Hf12-Ir increased the percentages of apoptotic
cells to 43.70% from 1.79% for PBS and 5.90% for BP.
Metabolic reprogramming by BP/Hf12-Ir

We next studied the disruption of glycolysis and mitochondrial
respiration by assessing key protein expressions, ATP and GSH
levels, and mitochondrial O2 levels (Fig. 4a). BP and BP/Hf12-Ir
decreased HK-II activity in CT26 cells by 25.8% and 28.8%,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) Schematic illustration of mitochondrial and glycolysis
metabolic reprogramming by BP/Hf12-Ir. (b) HK-II activities, (c) GAPDH
activities, (d) Intracellular ATP levels, (e) SDH activities, (f) hypoxia-
indicating Ru(dpp)3Cl2 luminescence signals, and (g) intracellular GHS
concentrations after different treatments. n = 3, ***p < 0.001; ****p <
0.0001.
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respectively, from PBS (Fig. 4b). As mitochondrial HK-II is key
for glycolysis, BP and BP/Hf12-Ir reduced downstream GAPDH
activity by 73.8% and 67.7%, respectively, from PBS (Fig. 4c). BP
and BP/Hf12-Ir also signicantly reduced intracellular ATP
concentration to 11.6 mM and 11.7 mM, respectively, from 286.3
mM for PBS (Fig. 4d).

BP can also disrupt themitochondrial tricarboxylic acid cycle
and OXPHOS by inhibiting succinate dehydrogenase (SDH)
activity to reduce oxygen consumption (Fig. 4a). BP and BP/Hf12-
Ir decreased SDH activity by 52.9% and 50.9%, respectively,
from PBS (Fig. 4e). We used Ru(dpp)3Cl2 to assess mitochon-
drial oxygen levels by CLSM. Incubation of CT26 cells under
hypoxic conditions (0.5% O2) led to strong red luminescence
from Ru(dpp)3Cl2 for PBS and Hf12-Ir groups due to O2 deple-
tion. BP and BP/Hf12-Ir reduced Ru(dpp)3Cl2 luminescence by
© 2025 The Author(s). Published by the Royal Society of Chemistry
57.7% and 54.4%, respectively (Fig. 4f and S19†). Moreover, BP
and BP/Hf12-Ir reduced intracellular GSH concentration to 13.5
mM and 13.9 mM, respectively, from 66.7 mM for PBS (Fig. 4g).
These results indicate hypoxia alleviation by BP and BP/Hf12-Ir
to increase intracellular O2 levels, which can enhance the effi-
cacy of RT. Hf12-Ir did not change HK-II, GAPDH, and SDH
activities, ATP production, and mitochondrial O2 level and
intracellular GSH concentration from PBS, further supporting
the inhibition of glycolysis andmitochondrial respiration by the
released BP.
In vivo study of BP/Hf12-Ir

The antitumor efficacy of BP/Hf12-Ir(+) was evaluated in
subcutaneous CT26 and 4T1 tumor models. Mice with estab-
lished CT26 tumors (∼100 mm3) were intratumorally injected
with PBS, Hf12-Ir, BP, or BP/Hf12-Ir (0.5 mmol Hf12-Ir or/and 0.2
mmol BP) on days 7 and 9 post tumor inoculation (Fig. S22†).
The tumors were irradiated with 2 Gy X-ray for 6 daily fractions.
While Hf12-Ir(+) and BP(+) signicantly slowed tumor growth
with tumor growth inhibition (TGI) values of 87.3% and 82.6%,
respectively, BP/Hf12-Ir(+) synergized the effects of RT and
metabolic reprogramming to provide a TGI of 95.2% (Fig. 5a).

The metabolic stress induced by BP can lead to immuno-
genic cell death (ICD) and the release of damage-associated
molecular patterns (DAMPs) from cancer cells. BP/Hf12-Ir(+)
treatment showed signicant ATP release (Fig. S20†) and
surface translocation of calreticulin (CRT) (Fig. S21†), both
hallmarks of ICD. These DAMPs play a crucial role in stimu-
lating the immune system to activate the tumor microenviron-
ment (TME). As BP/Hf12-Ir(+) doubled PD-L1 expression over
PBS in CT26 cells (Fig. S24†), we tested its combination with
immune checkpoint blockade to further enhance antitumor
effects via T cell reinvigoration. BP/Hf12-Ir(+) plus aPD-L1 (100
mg per mouse) signicantly enhanced the anti-tumor efficacy to
regress CT26 and 4T1 tumors with TGI values of 98.2% and
97.9%, respectively (Fig. 5b and S23a†), and eradicate tumors in
60% of the mice in both tumor models. In comparison, aPD-
L1(+) showed TGI values of 70.6% and 78.1% for CT26 and 4T1
tumors, respectively, while BP/Hf12-Ir(+) afforded TGI values of
95.2% and 91.6% for CT26 and 4T1 tumors, respectively.

The anti-metastatic effect of BP/Hf12-Ir(+) was evaluated on
an orthotopic 4T1 model, which is known to develop lung
metastasis. Histological analysis of lung tissues by hematoxylin
and eosin (H&E) staining revealed that BP/Hf12-Ir(+) and BP/
Hf12-Ir + aPD-L1(+) groups showed strong anti-metastatic effects
with 1.6% and 0% metastatic rates, respectively, while PBS and
aPD-L1(+) groups showed metastatic rates of 6.4% and 26.0%,
respectively (Fig. S31 and Table S1†).

To investigate the tumor immune microenvironment, we
proled leukocytes in tumors 7 days aer the last X-ray irradi-
ation by ow cytometry. BP/Hf12-Ir(+) and BP/Hf12-Ir + aPD-
L1(+) induced signicant polarization of macrophages to the
pro-inammatory M1-like state, leading to 13.2- and 27.0-fold
higher M1/M2 ratios, respectively, over PBS (Fig. 5c). BP/Hf12-
Ir(+) and BP/Hf12-Ir + aPD-L1(+) groups signicantly induced
cytotoxic CD8+ T cell inltration into the tumors (Fig. 5d, S28
Chem. Sci., 2025, 16, 5234–5240 | 5237
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Fig. 5 (a and b) Growth curves of CT26 tumors (a, n = 5) and 4T1
tumors (b, n = 5) after different treatments. (c–e) M1/M2 macrophage
ratios (c), CD8+ T cell (d), and CD4+ T cell (e) subpopulations in CT26
tumors. (f) ELISpot assay detecting SPSYVYHQF antigen-specific IFN-g
secreting splenocytes (n = 3).
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and 29†). Additionally, BP/Hf12-Ir + aPD-L1(+) enhanced the
helper (CD4+) T cell population in the TME by 2.7-fold over PBS
(Fig. 5e and S28†). These results show that BP/Hf12-Ir + aPD-
L1(+) exhibits superior anti-tumor effects by activating both
innate and adaptive immune responses.

An IFN-g enzyme-linked immunospot (ELISpot) assay was
performed on splenocytes from treated CT26 tumor-bearing
mice. BP/Hf12-Ir(+) and BP/Hf12-Ir + aPD-L1(+) showed 5.5-
and 10.8-fold more spot-forming cells (SFC) than PBS (Fig. 5f
and S32†), indicating antigen-specic antitumor effects and
systemic antitumor immunity from these treatments.

We sectioned CT26 tumors for H&E, terminal deoxy-
nucleotidyl transferase dUTP nick end labeling (TUNEL), g-
H2AX, Ki67 and carbonic anhydrase 9 (CA9) staining. BP/Hf12-
Ir(+)-treated tumors showed the lowest cancer cell densities
with pervasive nuclear chromatin pyknosis and cytoplasm
disappearance, the highest levels of DNA fragmentations, and
the lowest levels of cell proliferation (Fig. S26†). Additionally,
BP(+)- and BP/Hf12-Ir(+)-treated tumors displayed decreased
levels of CA9, suggesting hypoxia alleviation by BP in the tumors
5238 | Chem. Sci., 2025, 16, 5234–5240
(Fig. S27†). Lastly, the mice in all treatment groups showed
steady body weights (Fig. S23 and S30†) and normal histologies
of major organs (Fig. S25†), highlighting the lack of general
toxicity for BP/Hf12-Ir(+).
Conclusions

In this study, we developed a positively charged, mitochondria-
targeted, and BP-conjugated MOL for metabolic reprogram-
ming and radiosensitization. BP/Hf12-Ir inhibits oxidative
phosphorylation and glycolysis, reducing energy production
and alleviating hypoxia to enhance radiotherapy and anti-tumor
immunity. BP/Hf12-Ir-mediated radiotherapy inhibits tumor
growth by 95% and prevents lung metastasis. When combined
with immune checkpoint blockade, the treatment potently
regresses the tumors with 98% tumor growth inhibition by
inducing robust anti-tumor immunity. This work uncovers an
innovative approach to enhance radiotherapy efficacy and
strengthen anti-tumor immune responses.
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