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Several physical mechanisms have been proposed to explain allostery in proteins. They differ by the number
of internal states that they assume a protein to occupy, leaving open the question of what controls the emergence
of these distinct physical forms of allostery. Here, we analyze a simplified model of protein allostery under a
range of physical and evolutionary constraints. We find that a continuum of mechanisms between two archetypes
emerges through evolution. In one limit, a single-state mechanism exists where ligand binding induces a
displacement along a single normal mode, and in the other limit, a multi-state mechanism exists where ligand
binding induces a switch across an energy barrier to a different stable state. Importantly, whenever the two
mechanisms are possible, the multi-state mechanism confers a stronger allosteric effect and thus a selective
advantage. This work defines the essential constraints that distinguish single- and multi-state allostery and sets
the stage for a physical theory of its evolutionary origins.

DOI: 10.1103/PRXLife.1.023004

I. INTRODUCTION

Allostery, the change of activity of a macromolecule in
response to a perturbation at a distance from its active site,
is thought to be a ubiquitous feature of proteins [1]. Initially
described in the context of multimeric proteins [2–4], it is now
understood to underlie the regulation of proteins with diverse
structural architectures, from receptors to signaling proteins
and metabolic enzymes [5–9].

Efforts to explain how allostery works date back decades
ago with the phenomenological models of Monod, Wyman,
and Changeux (the MWC model) and Koshland, Nemethy,
and Filmer (the KNF model) [3,4]. These models postulate
that allosteric proteins occupy a small number of internal
states between which transitions occur either spontaneously
or upon interaction with a ligand. The MWC model pos-
tulates a thermal equilibrium between two distinct states,
while the KNF model postulates that conformational changes
are induced by binding events. These models have proved
successful at fitting experimental data, and multiple exten-
sions have been developed [4,10–12]. They leave, however,
a fundamental question unanswered: Under what physical
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and evolutionary conditions are one or several internal states
expected in allosteric systems?

Strategically, questions about the origins of allosteric
mechanisms are facilitated by reduced physical models. In
such models, the emergence of one or several states can be rig-
orously analyzed as a function of applied physical and evolu-
tionary constraints, permitting generalizable insights. Indeed,
simplified models of proteins have been studied extensively in
the context of protein folding, a problem that they helped to
significantly advance [13]. More recently, several such models
have been developed to study the physics and evolution of
allostery [14–23]. The idea is that by stripping down the com-
plexities of real proteins to the essential physical features that
control allostery, we can enable a foundation for better theory
and experiment design. Here, we introduce a general model
that encompasses previous work but extends it to address the
origin and properties of different forms of allostery.

Using this model, we show that two archetypal mecha-
nisms of cooperative allostery can arise, depending on the
physical and selective constraints under which evolution takes
place. First, we present a single-state mechanism where ligand
binding actuates a soft normal mode. Second, we present
a multi-state mechanism where ligand binding stabilizes an
alternate stable state, resulting in a switchlike conformational
change. The former necessarily emerges when the energy
landscape is constrained to be smooth. In contrast, when the
energy landscape has the possibility to be rugged, we find
that the second mechanism provides a statistically more likely
and more cooperative mechanism. We elucidate the origin of
this evolutionary outcome with a simple analytical theory, and
we provide a testable explanation for the pervasiveness of
multiple states in allosteric proteins.
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FIG. 1. The elastic network model. (a) The physical parameters
of the networks are determined by a sequence s = (s1, . . . , sN ) that
specifies the type si ∈ {1, . . . , Q} of each node i. Nodes are organized
in a two-dimensional triangular lattice. The spring connecting nodes
i and j has stiffness K (si, s j ) and rest length L(si, s j ) + ||Rdis

i −
Rdis

j || (see the Appendix). (b) The table L(si, s j ) has entries drawn
uniformly in [−σa, σa], where σ controls the disorder of the in-
teractions. (c) The table K (si, s j ) has all entries with K (si, s j ) = 1
except for one soft interaction with K (si, s j ) = 0.01. (d) Ground-
state structures of an elastic network for the four possible ligand
combinations. Solid lines represent stiff springs [K (si, s j ) = 1] and
dashed lines represent soft springs [K (si, s j ) = 0.01]. The ligand
binding is modeled by changing the rest length of springs between
two pairs of nodes that define the active or allosteric sites. One value
of the rest length defines a ligand (in green) and the other is the
solvent (in blue).

II. MODEL

Our model abstracts proteins into a two-dimensional elastic
network of residues whose interactions depend on their types.
Abstractly, the residues are shown as nodes in the network
[Fig. 1(a)]. The nodes can take Q values playing the role of
the 20 amino acids constituting protein sequences [Fig. 1(a)].
The energy of a network with sequence s = (s1, . . . , sN ) and
conformation r = (r1, . . . , rN ) is of the form

U (r, s, �act, �allo)

= 1

2

∑

〈i, j〉
ki j (δri j − �i j )

2 + 1

2
kact (δract − �act )

2

+ 1

2
kallo(δrallo − �allo)2, (1)

where the sum is over adjacent nodes in the network, and
where δri j = ||ri − r j || is the distance between nodes i and
j, ki j is the stiffness of the spring that connects them, and �i j

is its rest length. Both of the values of ki j and �i j depend on
the types si and s j :

ki j = K (si, s j ), �i j = L(si, s j ) + ∣∣∣∣Rdis
i − Rdis

j

∣∣∣∣. (2)

The values of K (si, s j ) and L(si, s j ) are given by Q × Q
interaction tables [Figs. 1(b) and 1(c)], which are fixed dur-
ing the evolution of the networks. We set all entries of the
spring stiffness table K (si, s j ) to be stiff (K = 1) except for
one interaction that is soft (K = 0.01). Rdis

i is a conforma-
tion generated from a disordered triangular lattice with mean
spacing a (see the Appendix). The entries of the rest length
deviation table L(si, s j ) are drawn uniformly in [−σa, σa],
where σ is a dimensionless parameter controlling the varia-
tion in the rest length deviations. When σ = 0, networks are
spatially disordered yet have a zero-energy ground state. As
σ increases, L(si, s j ) become heterogeneous and rest lengths
deviate around the base rest lengths ||Rdis

i − Rdis
j ||.

To provide intuition about what σ represents, consider
the absolute minimum energy of the network, known as the
ground-state energy,

E (s, �act, �allo) = min
r

U (r, s, �act, �allo). (3)

The energy is substantially lower than other local minima
associated with excited states when σ = 0. Increasing σ in-
creases the heterogeneity of the rest lengths, which leads to
networks where no single conformation can minimize the en-
ergy of all springs simultaneously. This phenomenon, known
as frustration, increases the energy of the ground state and
decreases the energy difference between the ground and ex-
cited states. At large values (σ = 0.3) the energy is rugged
with many nearly degenerate minima [see Fig. S1 of the
Supplemental Material (SM) [25]].

We define two binding sites—an active and an allosteric
site—on opposite sides of the network. The two sites corre-
spond to springs of stiffnesses kact and kallo and rest lengths
�act and �allo between nodes separated by distances δract and
δrallo. Binding at these sites is modeled by changing the rest
length of one of these springs from one value representing
the “solvent” �0 to another value representing a “ligand” �1

[colored bonds in Fig. 1(d); their stiffness is, for simplicity, the
same, kact = kallo = 1]. Four ground-state energies are there-
fore defined, depending on whether the two sites are unbound,
E00 = E (�0, �0), one site is bound, E01 = E (�0, �1) and E10 =
E (�1, �0), or both are bound, E11 = E (�1, �1). These energies
depend on the sequence s and are estimated using a variant of
the Basin-Hopping algorithm [24] (see the Appendix). Given
the four energies, we quantify allostery by the binding coop-
erativity, the extent to which the binding energy at the active
site depends on the presence of a ligand at the allosteric site,
that is,

��E (s) = [E10(s) − E00(s)] − [E11(s) − E01(s)]. (4)

We evolve the sequence s of a network using a Monte Carlo
algorithm with the analog of mutations consisting of randomly
changing the type of the node and a fitness defined by ��E
(see the Appendix).

III. RESULTS

A. Physical constraints on allostery

Previous elastic network models used to evolve allostery
[15,17–20] shared two key design properties. First, they
lacked frustration, the condition in which stressed springs
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FIG. 2. Archetypes of networks with two different allosteric mechanisms. Parts (a)–(f) show a network evolved with homogeneous
interactions (σ = 0), which displays a single-state mechanism. Parts (g)–(l) show a network evolved with disordered interactions (σ = 0.3),
which displays a two-state mechanism. (a),(b) Ground-state structures of the fully solvated (00) and fully bound (11) networks. (c) Bond
strain between the structures in (a) and (b). (d) Energy of the fully solvated (blue) and fully bound (green) networks along the conformational
coordinate y interpolating between the structures in (a) and (b) (see the Appendix). (e) Structural displacements between the structures in
(a) and (b) (00 → 11, in black) and motion of the softest mode of the unbound state (00, in red), showing that the two are aligned. (f) Overlap
qk between the structural displacement upon binding ligand �r and each normal mode of the network vk (qk = |vk · �r/‖�r‖ |) as a function
of the mode stiffness λk , which shows, as in (e), a strong overlap along the first mode. (g)–(l) The same analyses for a network with a two-state
mechanism, showing, in contrast, a major conformational change [(h) vs (g)], an energy with two minima along the conformational coordinate,
and no overlap between the displacement induced by the ligand and the softest normal modes (k)–(l).

occur in the ground state. This design results in energy
landscapes with effectively one minimum. Second, mutations
only changed the spring stiffness of interactions. Our model
implements these design properties when σ = 0.

In this limit, evolving networks for allostery reproduce
the mechanism described in previous works [16,17,19]—a
soft normal mode connects the active site to the allosteric
site, and ligand binding induces a strain that aligns with this
soft mode [Figs. 2(a)–2(f)]. To explain, a soft normal mode
defines a direction of motion along which the system can
fluctuate substantially with near isoenergetic changes. We
quantify the implication of this motion in allostery by com-
puting the overlap between the network’s softest mode v1 and
the allosteric displacement �r (q1 = |v1 · �r/‖�r‖|) (see the
Appendix). The energy along the conformational coordinate,
U (y) = U (R00 + y�r), where R00 represents the conforma-
tion in the unbound ground state, has a single minimum that
shifts upon ligand binding, corresponding to a conformational
change [Fig. 2(d)]. For σ = 0, the ground-state structures in
the unbound R00 and bound R11 conditions belong to the
same basin of attraction [Fig. 2(d)]. Thus, we say that ligand
binding induces a single-state conformational change (see the
Appendix), in contrast to cases where the basins of attraction
differ [e.g., see Fig. 2(j)]. Together, a large overlap of the con-
formational change with a single soft mode and the presence
of a single energetic basin defines “single-state allostery.”

Making the energy landscape more rugged by taking σ > 0
qualitatively changes this picture [Figs. 2(g)–2(l)]. A network
evolved for allostery in this context can now switch upon
binding to a different stable state that is separated by an
energy barrier, a multi-state conformational change [Fig. 2(j)].
Additionally, the allosteric displacement no longer necessarily
overlaps with the softest mode [Fig. 2(l)]. This mechanism
defines “multi-state allostery.”

Which of these mechanisms emerges over evolution de-
pends critically on the diversity of available interactions

imposed by σ : as σ increases, networks become more frus-
trated, resulting in more rugged energy landscapes. The
fraction of evolved networks with a multi-state conforma-
tional change (symbolized by ncc/n) increases while the
overlap between the softest mode and the allosteric displace-
ment decreases [Figs. 3(a) and 3(b)]. This is also the case
for random networks [gray curves in Figs. 3(a) and 3(b)], but
evolved networks show significant enrichment of multi-state
mechanisms for large σ and of single-state mechanisms for
low σ (green curves). In between these limits exists a con-
tinuum of mechanisms that are characterized by intermediate
values of ncc/n and q1. The results of Figs. 3(a) and 3(b) are
robust to parameter choice [see Fig. S2 of the SM [25]] and
hold for 3D networks as well [see Fig. S3 of the SM [25]].

The difference between mechanisms is also illustrated by
representing the ground-state energy of evolved networks as a
function of different binding ligands, corresponding to vary-
ing the rest lengths �act and �allo of the springs defining the
active and allosteric sites [Figs. 3(c) and 3(d)]. In this repre-
sentation, the ground-state energy landscape associated with
a single-state allosteric network typically takes the form of an
anisotropic basin elongated in the �act = �allo direction such
that E11 + E00 < E10 + E01. On the other hand, the energy
landscape associated with a multi-state allosteric network can
display two minima around �act = �allo = �0 and �act = �allo =
�1, which also achieves E11 + E00 < E10 + E01.

B. Evolutionary constraints on allostery

The previous results show that the diversity of available
physical interactions determines the mechanism of allostery.
Under conditions in which both mechanisms can evolve,
which does evolution favor? We address this question by
considering a set of interactions that contains both homoge-
neous (σ = 0) and disordered (σ = 0.3) rest length deviation
distributions [Fig. 4(a)]. Networks evolved with such an in-
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FIG. 3. Interaction disorder controls the mechanism of allostery.
(a),(b) Statistics over n = 100 networks evolved to maximize ��E
over 500 Monte Carlo iterations as a function of the disorder σ of
the interaction table L(si, s j ). (a) Fraction of networks that undergo a
multi-state conformational change ncc/n (errors bars are 95% Wilson
CI). (b) Mean overlap between the softest mode of the network v1

and the allosteric displacement upon ligand binding �r computed
as q1 = |v1 · �r/‖�r‖ | (error bars are 95% Wald CI). (c),(d) Ex-
amples of ground-state energy surfaces E (�act, �allo ) for networks
evolved with homogeneous and disordered interactions, respectively.
The “+” marks the locations of different binding combinations,
�act, �allo = (�0, �0), (�1, �0), (�0, �1), (�1, �1).

teraction table have effectively the “choice” to populate a
part of sequence space with either smooth or rugged local
energy landscapes. Simulations show that networks evolved
under a selection for cooperativity have a greater number of
disordered interactions (those between nodes of types 1–5)
than those of random networks (random, 24%; evolved, 34%).
Correspondingly, the vast majority of these evolved networks
display multi-state conformational changes (random, 10%;
evolved, 90%) and an overlap with the softest mode com-
parable to those of random networks (random, q1 = 0.32;
evolved, q1 = 0.36). These results are represented by the data
point Eunfolded = ∞ in Fig. 4. They indicate that the multi-
state mechanism is more competitive than the single-state
mechanism. That is, when the interactions provide suffi-
cient disorder, networks tend to evolve towards multi-state
allostery.

In real proteins, the analog of our interaction tables is
interactions between the amino acids. The physics of these
interactions are largely fixed, and σ is therefore not subject
to physiological control. But some tunable parameters may
play a role similar to σ and effectively control the ruggedness
of the energy landscape. One such parameter is thermal sta-
bility, which is itself subject to natural selection. As a proxy
for thermal stability, we introduce here an arbitrarily defined
energy Eunfolded to represent the energy of a nonfunctional un-
folded state. To impose a stability constraint, we again select
networks based on ��E , but now we restrict the evolution to
sequences satisfying E00 < Eunfolded.

By evolving networks for varying values of Eunfolded, we
verify that smaller values of Eunfolded result in more stable
networks [Fig. 4(f)]. The most stable networks are less likely
to undergo a multi-state conformational change upon ligand
binding [Fig. 4(c)] and, on average, show a greater overlap
between the allosteric displacement and the softest mode
[Fig. 4(e)]. Additionally, the usage of disordered interactions
decreases with decreasing Eunfolded [Fig. 4(d)]. These results
show how an additional selective pressure, here stability, can
alter the likelihood to evolve a single- or multi-state mecha-
nism of allostery. The underlying phenomenon is the same as
before—stable networks minimize frustration and thus tend
to populate smoother parts of the landscape, effectively corre-
sponding to a smaller σ . Thus, thermal stability is a parameter
that can, in principle, control the mechanism of allostery.

C. 1D model

The two archetypal mechanisms displayed by our two-
dimensional (2D) network model can be illustrated in an even
simpler one-dimensional (1D) model. This model consists of
two rigid bars connected by three springs—two harmonic
springs represent the active and allosteric sites, and a single
elastic spring with the potential to flip mediates the mecha-
nism of allostery [Fig. 5(a)]. The energy of this model is

U (x) = 1
2 [ka(x − �act )

2 + km(|x| − �m)2 + ka(x − �allo)2].
(5)

The ground-state energy E (�act, �allo) = minx U (x) is har-
monic with a single minimum when �m = 0 and has two
minima when �m > 0 [Figs. 5(c) and 5(d)]. As in the 2D
elastic network, we represent solvent and ligand by the alge-
braic values �0 and �1, respectively. For simplicity, we assume
�0 = −�1. Under these assumptions, the cooperativity is

��E = ka(kaδ + 2km�m)δ

2ka + km
, (6)

with δ = |�1 − �0| [see the SM [25]]. The mechanism is
strictly single-state only for �m = 0, in which case ��E
cannot exceed kaδ

2/2. On the other hand, when �m > 0, ��E
can take arbitrarily large values and scales as ��E ∼ ka�mδ

when km → ∞. A continuum of mechanisms exists between
these two extremes [Fig. 5(e)], but, when viewing �m as a
physical property of the landscape and km as an evolutionary
parameter, two distinct regimes emerge: when �m < δ/4, a
single-state mechanism with a soft mode (km = 0) is optimal,
while when �m > δ/4, a two-state mechanism with a large
barrier (km = ∞) is optimal. Finally, if �m is itself subject
to evolution, maximal cooperativity ��E is achieved by the
two-state mechanism (�m = ∞, km = ∞).

The analytical prediction of the 1D model (6) can be com-
pared with data from the 2D model by defining 2D analogs,
k̃m and �̃m, of the 1D model’s reduced parameters, km/ka and
�m/δ. We define k̃m = λ1/λ̃, where λ1 is the stiffness of the
softest nonzero mode and λ̃ is the median mode stiffness.
This quantity captures the stiffness of the allosteric mode in
single-state allostery that km/ka measures in the 1D model.
In the 1D model, �m is related to the height of the barrier of
U (x) when ka = 0: �Ubarrier,1D = km�2

m/2. To define an equiv-
alent quantity for the 2D elastic network model, we consider
�̃m = δ−1√2�Ubarrier/λ1 when kact = kallo = 0, and �Ubarrier
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FIG. 4. Additional selective pressures can modulate the mechanism of allostery. (a) An example of a rest length deviation table L(si, s j )
designed to support both homogeneous and disordered interactions. (b) Spring-constant interaction table K (si, s j ). (c)–(f) Properties of
networks evolved under a joint pressure for cooperativity (large ��E ) and stability (small E00) as a function of the intensity Eunfolded

of the selective pressure for stability (statistics over 100 networks evolved through 500 Monte Carlo iterations). (c) Fraction of networks
that undergo a two-state conformational change (errors bars are 95% Wilson CI). (d) Fraction of interactions between nodes of types 1–5
[(si, s j ) ∈ {1, 2, 3, 4, 5}2; errors bars are 95% Wilson CI]. (e) Mean overlap of the allosteric displacement upon ligand binding (00 → 11) and
the softest nonzero mode of the network in the unbound state (errors bars are 95% Wald CI). (f) Ground-state energy of the unbound state
(errors bars are 95% Wald CI). In the absence of constraint for stability (Eunfolded = ∞), networks evolve a multi-state mechanism using the
disordered interactions. As the constraint for stability is increased (Eunfolded decreased), the networks tend to evolve a single-state mechanism
relying on nondisordered interactions.

is the height of the network’s barrier (see the Appendix). We
find that nonallosteric random networks have large values of
k̃m and small values of �̃m for all values of σ [Fig. 6(a)]. At
small values of sigma, evolved, allosteric networks localize
to the single-state region where k̃m and �̃m are both small as
predicted by the 1D model. Increasing σ enables networks
to have larger energy barriers and larger values of �̃m [see
Fig. S4A of the SM [25]]. Evolved networks at large σ take
advantage of this by switching to a multi-state mechanism
and localizing to the large k̃m, large �̃m region. Comparing
Figs. 5(e) and 6(a) shows the remarkable ability of the 1D
theory to qualitatively describe the complex behavior from the
2D network.

Equation (6) predicts that cooperativity of the two mech-
anisms should scale differently with the magnitude of ligand
binding perturbation δ = |�1 − �0| (��E ∼ δγ : single-state,
γ = 2; and multi-state, γ = 1). When σ = 0 and networks
use the single-state mechanism, we find γ ≈ 1.95 for evolved
networks [Fig. 6(b)]. Increasing σ results in decreasing values
of γ toward unity. This result suggests a testable hypothe-
sis: If smaller ligands induce more subtle perturbations, then
allosteric proteins that bind small molecules should use the
multi-state mechanism more often than allosteric proteins
whose ligands are other large proteins.

To summarize, the 1D model identifies the key ele-
ments necessary for understanding the connection between
single-state and multi-state allostery. It suggests that the spe-
cific details of the 2D network, which are absent in the 1D
model, can vary with little effect [Fig. S2 of the SM [25]].

IV. DISCUSSION

In this work, we study the evolutionary origins of sin-
gle or multiple states in systems selected for allostery using
a minimal yet generic physical model of protein allostery.
Depending on the ruggedness of the underlying energy
landscapes, two archetypal mechanisms emerge: in smooth
landscapes a single-state mechanism evolves, while in rugged
landscapes a multi-state mechanism evolves. In single-state
systems, allostery is mediated through the actuation of a
soft global mode induced by ligand binding, whereas in
multi-state systems, ligand binding stabilizes an alternate pre-
existing state. We find that the multi-state mechanism has
a greater potential for cooperativity and is therefore evolu-
tionarily favored whenever it has the possibility to evolve.
We also find that additional selective pressures can modulate
the outcome of evolution; in particular, a strong selection
for stability favors the evolution of single-state mechanisms.
These results are demonstrated by numerical simulations
in a two-dimensional elastic network model and recapitu-
lated by analytical calculations in a simpler one-dimensional
model.

Elastic network models have been extensively studied as
coarse-grained models for proteins and have been shown to
accurately capture thermal fluctuations [26,27]. Here, we use
these models to implement a generic energy landscape in
which the allosteric role of soft modes and multiple states
can be understood. Multistate conformational changes take
the form of buckling instability in the elastic network model,
while in proteins, state transitions may take many different
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FIG. 5. A 1D model recapitulates the results obtained with 2D
elastic network. (a) The model consists of three springs connecting
two rigid bars constrained to move in one dimension. Two springs
are analogous to the ligand springs of the elastic network. The third
spring, whose contribution to the energy is km(|x| − �m )2/2, mediates
the mechanism of allostery and can flip. (b) Total energy U (x) as a
function of x for two values of �m: the energy landscape has a single
minimum �m = 0 and two minima when �m > 0. (c) The ground-
state energy of the 1D model, E (�act, �allo ). Small values of km, �m

correspond to a single-state mechanism. (d) The ground-state energy
of the 1D model, E (�act, �allo ). Large values of km, �m correspond to
a multi-state mechanism. (e) Cooperativity ��E as a function of the
normalized quantities km/ka and �m/δ, showing a continuum between
purely single-state and strongly two-state mechanisms.

physical forms [5,28–30]. Regardless, the essential feature
of multi-state conformational switching is a barrier between
two energy minima, which is shared in simple models and
real proteins. The fact that our results extend to 3D networks
[Fig. S3 of the SM [25]] and they are recapitulated by a 1D
model of three springs (Figs. 5 and 6) indicates that they are
robust to details of the geometry of the network and to the
nature of the potential. Indeed, the only feature necessary to
control single- or multi-state outcomes is tunable ruggedness.
An implication is that as seen by simulations [Fig. 4(f)], multi-
state proteins that varied through directed evolution protocols
to optimize stability should lose their multi-state character due
to loss of ruggedness, a prediction that can be experimentally
tested. These findings illustrate the clarifying value of simple
physical models in isolating the essential parameters from the
large ensemble of complex properties exhibited by natural
proteins.

For computational expedience, the simulations here are
at zero temperature, ignoring changes in system entropy.
However, the distinction between single-state and multi-state
mechanisms extends to finite temperatures in a straightfor-
ward manner by simply considering the free energy instead of
the ground-state energy. We carried out this generalization for
the one-dimensional model, showing that temperature does

not modify the general conclusions reported here [see the SM
[25]]. In future work, it will be valuable to extend this work to
consider “dynamic allostery” in which long-range interactions
are driven purely by propagated changes in entropy [31–33].
The route to this extension is by enabling ligand binding to
stiffen ligand binding sites rather than applying a force or
a displacement. Our model also does not explicitly account
for partial or global unfolding [34], but allosteric mechanisms
where ligand binding differentially stabilizes the folded and
unfolded ensembles are also instances of multi-state mecha-
nisms when folding is a cooperative process [35].

The distinction between single- and multi-state mecha-
nisms of allostery reflects the two classes of phenomenolog-
ical models that have been introduced to describe allostery,
namely the MWC and KNF models [3,4]. The KNF model,
where a state changes only upon ligand binding, assumes a
single-state mechanism, while the MWC model, where two
states exist before ligand binding, assumes a two-state mech-
anism. Indeed, the physical model described here can be
reformulated from a thermodynamic perspective to be analo-
gous to MWC and KNF models (see the SM [25]). The MWC
and KNF models are archetypes at the two ends of a con-
tinuum of models for allostery that interpolate between them
[11]. Thus the work presented here provides a foundation for
understanding the assumptions underlying these models, and
perhaps more importantly, the evolutionary origin of specific
models for allostery.

The central parameter controlling single- or multi-state
allostery is the heterogeneity σ of interactions, leading to
frustration and ruggedness in the energy landscape of the
model networks. Indeed, a significant prior work shows that
real proteins are frustrated networks [36,37] and that this
property is important for allostery [38]. Since conformational
switching between stable states [5,39,40], folding intermedi-
ates [41], and misfolding [42] are commonplace in proteins,
we conclude that amino acid interactions display the kind of
heterogeneity in natural proteins that enables the evolution
of multi-state allostery. Indeed, these considerations together
with the work presented here suggest that a multi-state mech-
anism is in fact statistically more likely in natural allosteric
proteins.

This statement is consistent with the diversity of mech-
anisms underlying allostery observed in proteins. Previous
work using normal mode analysis to estimate the largest
overlap between the allosteric displacement and any normal
mode (maxi qi) of proteins has found a broad range of values.
Several studies converge to find that the largest overlaps in
allosteric proteins are of the order of 0.5 with a standard
deviation of the order 0.2 [21,43]. When we measure the
largest overlap maxi qi rather than the overlap with the softest
mode q1, we find overlaps of a similar order (�0.5) even for
nonallosteric random networks [Fig. S6EF of the SM [25]].
Additionally, we find that many evolved allosteric networks
lie in the continuum between the two archetypal mechanisms,
with both an energy barrier separating multiple states and
some overlap with the softest mode q1 > 0.5 [Fig. S6A-D,K,L
of the SM [25]]. Thus, the empirical finding that the al-
losteric conformational change overlaps with the softest mode
does not signify the absence of a multi-state conformational
change. This point has been made by Gur, Zomot, and Bahar
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FIG. 6. 1D model predicts the behavior of the 2D elastic networks. k̃m and �̃m are the 2D elastic network analogs of the 1D model’s
parameters km and �m. (a) The mean k̃m and �̃m and ��E are plotted for 100 random and 100 evolved networks at different σ . Error bars are
95% CI. Consistent with the 1D model, nonallosteric random networks localize to the large k̃m and small �̃m corner. When σ is small, networks
approach the single-state mechanism limit (�m = 0, km = 0). As σ increases, networks localize towards the multi-state mechanism limit of large
km, large �m. (b) Scaling of allosteric cooperativity ��E with the magnitude of ligand binding perturbation δ = |�1 − �0|. Each data point
shows the mean ��E averaged over 100 evolved networks with parameters σ and δ. For each σ , data are fit to the power law ��E ∼ δγ ,
and fitted γ values are shown at the bottom. The 1D model predicts that in the single-state limit, γ = 2, while in the multi-state limit γ = 1.
2D networks evolved at σ = 0 use a single-state mechanism and show a scaling of γ ≈ 1.95. As σ increases, networks increasingly use the
multi-state mechanism, and values of γ limit toward one.

based on analysis of elastic networks by molecular-dynamics
simulations [44].

An interesting perspective is the potential value of sim-
plified models for a better understanding of computational
approaches for inferring allosteric networks from extant se-
quence data [45]. Indeed, statistical analyses of homologous
protein sequences has demonstrated the existence of sparse,
collectively evolving networks of amino acids within pro-
teins that mediate allosteric communication [46–48]. It will
be interesting to use the simplified models presented here as
a ground truth to study how the sequence-based inference
process depends on both the sampling of input data and the
parameters that control the emergence of different forms of
allostery.

While our work focuses on allostery in the context of
proteins, the implications of these results extend more broadly
to the emerging field of learning in physical systems [49]. The
idea of physical learning is to start with a randomly configured
(and nonfunctional) physical system and to iteratively opti-
mize its performance for a chosen task by varying the many
physical parameters [50–52]. For example, recent studies have
taken this approach to train an elastic network to perform an
allosteric task [17,23,52,53]. Typically, networks are designed
with minimal frustration, resulting in single-state allostery, but
multi-state behavior has been empirically shown to emerge
when rest lengths are allowed to vary [52,53]. The work pre-
sented here provides a clear rationale for these observations
and predicts that by design with frustration, more efficient
and varied allosteric functions may be achieved. It will be
interesting to test these ideas using now emerging methods to
prototype physical materials that embody the simulated net-
works [17,54,55]. Such experiments in macroscopic materials
would provide a clear test of the ideas presented in this work
even as we await practical methods for engineering allosteric
proteins.
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APPENDIX: METHODS

To build a network, nodes are first placed on a triangular
lattice (with spacing a) with their positions given by Rlat

i .
An adjacency matrix is defined by nearest neighbors, Ai j = 1
if ||Rlat

i − Rlat
j || = a and Ai j = 0, otherwise. The nodes are

then displaced by a random uniform perturbation �Ri ∼
([−aε, aε], [−aε, aε]) to achieve a disordered structure Rdis

i
= Rlat

i + �Ri. The dimensionless parameter ε controls the
extent of the spatial disorder and is taken to be ε = 0.1
unless stated otherwise. Each node is assigned a value si ∈
{1, 2, . . . , Q} giving the network a sequence s = (s1, . . . , sN ).
Springs are connected between nodes with stiffness and rest
lengths that depend on the sequence s,

ki j = Ai jK (si, s j ), (A1)

�i j = L(si, s j ) + ∣∣∣∣Rdis
i − Rdis

j

∣∣∣∣. (A2)

The values of K (si, s j ) and L(si, s j ) are given by Q × Q
symmetric interaction tables. Specifically, we consider all
interactions in K (si, s j ) to be stiff (K = 1) except for one
randomly chosen entry that is soft (K = 0.01). The entries
of L(si, s j ) are drawn uniformly in [−aσ, aσ ], where σ is a
dimensionless parameter controlling the disorder in the rest
length deviations.
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The full energy of a network with conformation r =
(r1, . . . , rN ) sequence s is

U (r, s, �act, �allo)

= 1

2

∑

i> j

ki j (δri j − �i j )
2

+ 1

2
krep

∑

i> j

(1 − Ai j )	(�rep − δri j )(δri j − �rep)2

+ 1

2
kact (δract − �act )

2 + 1

2
kallo(δrallo − �allo)2, (A3)

where ri = (xi, yi ) is the position of node i, and δri j =
||ri − r j || is the distance between nodes i and j. To prevent
nonphysical network collapse behaviors, the second term of
(A3) defines a harmonic repulsion term between nonadjacent
nodes. 	 is the Heaviside function so that 	(�rep − δri j ) = 1
if �rep > δri j and 0 otherwise. �rep = 0.7 and krep = 2 are the
distance cutoff and spring constant for the harmonic repulsion
term, respectively. All networks simulated in this work have a
size of N = 49 nodes.

The third and fourth terms in (A3) detail the contribution of
ligand binding to the active and allosteric sites, respectively.
The active site is chosen by picking two nodes on one side of
the network that are previously unconnected and connecting
them with a spring of rest length �act and stiffness kact. δract

measures the distance between these two nodes. The allosteric
site is chosen in the same way but on the opposite side of the
network. For this work, kact = kallo = 1. Importantly, �act and
�allo are independent of s.

The ground-state energy of the network is computed as

E (s, �act, �allo) = min
r

U (r, s, �act, �allo). (A4)

Binding is modeled by changing the rest length of a binding
site spring from one value representing the “solvent” �0 to
another value representing the “ligand” �1 [colored bonds in
Fig. 1(d)]. The binding cooperativity is computed as

��E (s) = [E (s, �1, �0) − E (s, �0, �0)]

− [E (s, �1, �1) − E (s, �0, �1)]. (A5)

Disorder enters in three forms in our model, the first from vari-
ability in the stiffnesses of the springs, which is enabled by the
heterogeneity of the stiffness table K (si, s j ). A second form
enters through the spatial disorder in the base conformation
Rdis

j . In the case of ε > 0 and σ = 0, the rest lengths reduce to
the pairwise distances of the disordered lattice conformation
�i j = ||Rdis

i − Rdis
j ||, which results in U (s, Rdis) = 0 (ignor-

ing the effect of ligands). This implies that spatial disorder
originating from ε > 0 does not contribute to the frustration
of the network. Finally, when σ > 0 the rest lengths can
deviate from ||Rdis

i − Rdis
j || by an amount given by L(si, s j ).

Only the disorder in L(si, s j ) gives rise to frustration in the
network. The realizations of K (si, s j ), L(si, s j ), and Rdis

i are
fixed during the evolution of network.

Estimating ground states. We estimate the ground state of
a network with a version of the Basin-Hopping algorithm [24]
where a genetic algorithm is used instead of a Monte Carlo
algorithm to search conformation space. The algorithm (i)
initializes a population of p copies of a network; (ii) perturbs

(r → r + η, η ∼ N ) and relaxes each structure to a local
minimum using the FIRE algorithm [56]; (iii) removes the p/2
structures with the highest relaxed energy; (iv) replicates each
remaining structure; (v) repeats steps (ii)–(iv) Niterations times;
(vi) outputs the structure with the lowest energy. We take
p = 20 and Niterations = 100, which we find to be sufficient for
estimating the ground state (See Fig S1D of the SM [25] for
an estimate of the error in the algorithm).

Definition of single-state and multi-state mechanisms. Let
R00 and R11 denote the unbound (�act = �allo = �0) and bound
(�act = �allo = �1) ground-state conformations, respectively,

Rii = arg min
r

U (r, s, �i, �i ), i = 0, 1. (A6)

We define R′
00 as the structure relaxed from R11 in the absence

of a ligand (�act = �allo = �0), and R′
11 as the structure relaxed

from R00 in the presence of the two ligands (�act = �allo = �1).
We say that the mechanism is single-state if R00 = R′

00 and
R11 = R′

11, and multi-state otherwise.
Normal modes. Normal modes are computed by eigenvalue

decomposition of the Hessian matrix H of the energy in the
unbound state R00 when the active and allosteric site springs
are removed, kact = kallo = 0. The components of H are

Hi j = ∂2

∂xi∂x j
Ū

∣∣∣
r=R00

, (A7)

Ū = U (r, s, �0, �0, kact = 0, kallo = 0). (A8)

There are three zero modes (λk = 0) corresponding to global
rotation vrot and two global translations vx and vy. The
nonzero modes and their stiffnesses are denoted vk and λk with
λi � λ j if i > j, with v1 being the softest nonzero mode.

Allosteric displacement. Given d = R11 − R00, the al-
losteric displacement �r is computed as

�r = d − (d · vrot )vrot − (d · vx )vx − (d · vy)vy. (A9)

Overlaps. The overlap between a nonzero normal mode vk

and the allosteric displacement �r is computed as

qk =
∣∣∣∣

�r
‖�r‖ · vk

∣∣∣∣. (A10)

Conformational coordinate. The conformational coordi-
nate y is defined by r(y) = R00 + y�r, and its associated
energy is defined by U (y) = U (r(y), s).

Monte Carlo evolution. Networks are “evolved” using a
Metropolis Monte Carlo method with an error-catching step
due to the stochastic nature of the ground-state finding al-
gorithm. A candidate sequence s′, one mutation away from
the current sequence s, is accepted with probability p =
exp ([��E (s′) − ��E (s)]/Tevo), where Tevo = 10−5. Fol-
lowing the acceptance or rejection step, the ground states of
the current sequence, E00, E10, E01, and E11, are systemati-
cally reevaluated. If a lower ground-state energy is found, the
current sequence is set to the previous sequence, and ground
states are recomputed. This step prevents inaccurate ground-
state estimates from causing fictitiously large values of ��E .
Importantly, the error in the ground state finding algorithm
does not affect the results as demonstrated by Fig. S2P of the
SM [25]. The same results are found with more exhaustive
sampling and thus lower rates of error.
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Elastic network analogs of 1D model parameters. In the
1D model, km can be interpreted as the stiffness of the al-
losteric mode. To define an equivalent quantity for the 2D
elastic network model, we consider k̃m = λ1/λ̃, where λ1 is
the stiffness of the softest nonzero mode and λ̃ is the median
stiffness. In the 1D model, �m is related to the height of the
barrier of U (x) when ka = 0: �Ubarrier = km�2

m/2. To define

an equivalent quantity for the 2D elastic network model,
we consider �̃m = δ−1√2�Ubarrier/λ1 when kact = kallo = 0.
We define �Ubarrier = 0 if U (y) has one minimum [U ′(y) =
0,U ′′(y) > 0]. If U (y) has two minima, we take y1 and y2 to
be their locations and y3 to be the location of the maximum in
between. We define �Ubarrier = U (y3) − max(U (y1),U (y2)).
Scenarios with more than two minima are not observed.
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